Bayesian Time-Varying Autoregressive Models of COVID-19 Epidemics
Year of publication: |
[2021]
|
---|---|
Authors: | Giudici, Paolo ; Tarantino, Barbara ; Arkaprava, Roy |
Publisher: |
[S.l.] : SSRN |
Subject: | Coronavirus | Epidemie | Epidemic | Bayes-Statistik | Bayesian inference | Autokorrelation | Autocorrelation | Modellierung | Scientific modelling | Theorie | Theory |
Extent: | 1 Online-Ressource (27 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments July 25, 2021 erstellt |
Other identifiers: | 10.2139/ssrn.3892996 [DOI] |
Classification: | C11 - Bayesian Analysis ; C53 - Forecasting and Other Model Applications |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Combination Schemes for Turning Point Predictions
Billio, Monica, (2013)
-
Combination Schemes for Turning Point Predictions
Billio, Monica, (2012)
-
Combinations schemes for turning points predictions
Billio, Monica, (2011)
- More ...
-
Machine learning and credit risk : empirical evidence from SMEs
Bitetto, Alessandro, (2021)
-
Can we trust machine learning to predict the credit risk of small businesses?
Bitetto, Alessandro, (2024)
-
Context-dependence of dynamic capabilities in small, entrepreneurial firm internationalization
Hagen, Birgit, (2024)
- More ...