Benchmarking econometric and machine learning methodologies in nowcasting GDP
Year of publication: |
2024
|
---|---|
Authors: | Hopp, Daniel |
Published in: |
Empirical economics : a quarterly journal of the Institute for Advanced Studies. - Berlin : Springer, ISSN 1435-8921, ZDB-ID 1462176-9. - Vol. 66.2024, 5, p. 2191-2247
|
Subject: | ARIMA models | Bayesian methods | Econometric models | GDP | Machine learning | Macroeconomic forecasting | Neural networks | Vector autoregression models | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Neuronale Netze | VAR-Modell | VAR model | Bruttoinlandsprodukt | Gross domestic product | Benchmarking | Nationaleinkommen | National income | Ökonometrie | Econometrics | Ökonometrisches Modell | Econometric model | Wirtschaftsprognose | Economic forecast | ARMA-Modell | ARMA model | Schätztheorie | Estimation theory | Zeitreihenanalyse | Time series analysis |
-
Benchmarking econometric and machine learning methodologies in nowcasting
Hopp, Daniel, (2022)
-
A three-frequency dynamic factor model for nowcasting Canadian provincial GDP growth
Chernis, Tony, (2020)
-
Neighbor weighting and distance metrics in nearest neighbor nowcasting of Swedish GDP
Jönsson, Kristian, (2024)
- More ...
-
Hopp, Daniel, (2021)
-
Constructing a criteria-based classification for Small Island Developing States : an investigation
MacFeely, Steve, (2021)
-
Economic nowcasting with long short-term memory artificial neural networks (LSTM)
Hopp, Daniel, (2021)
- More ...