Bias-corrected confidence intervals in a class of linear inverse problems
Year of publication: |
December 2017
|
---|---|
Authors: | Florens, Jean-Pierre ; Horowitz, Joel ; Van Keilegom, Ingrid |
Published in: |
Annals of economics and statistics. - Amiens : GENES, ISSN 2115-4430, ZDB-ID 2588293-4. - Vol. 128.2017, p. 203-228
|
Subject: | Bias-Correction | Functional Linear Regression | Nonparametric Instrumental Variables | Inverse Problem | Regularization | Spectral Cutoff | Nichtparametrisches Verfahren | Nonparametric statistics | Schätztheorie | Estimation theory | IV-Schätzung | Instrumental variables | Regressionsanalyse | Regression analysis |
-
Bias-corrected confidence intervals in a class of linear inverse problems
Florens, Jean-Pierre, (2016)
-
Optimal uniform convergence rates for sieve nonparametric instrumental variables regression
Chen, Xiaohong, (2013)
-
Semiparametric varying coefficient models with endogenous covariates
Centorrino, Samuele, (2016)
- More ...
-
Bias-corrected confidence intervals in a class of linear inverse problems
Florens, Jean-Pierre, (2016)
-
Bias-corrected confidence intervals in a class of linear inverse problems
Florens, Jean-Pierre, (2016)
-
Frontier estimation in nonparametric location-scale models
Florens, Jean-Pierre, (2014)
- More ...