Bias-corrected Pearson estimating functions for Taylor's power law applied to benthic macrofauna data
Estimation of Taylor's power law for species abundance data may be performed by linear regression of the log empirical variances on the log means, but this method suffers from a problem of bias for sparse data. We show that the bias may be reduced by using a bias-corrected Pearson estimating function. Furthermore, we investigate a more general regression model allowing for site-specific covariates. This method may be efficiently implemented using a Newton scoring algorithm, with standard errors calculated from the inverse Godambe information matrix. The method is applied to a set of biomass data for benthic macrofauna from two Danish estuaries.
Year of publication: |
2011
|
---|---|
Authors: | Jørgensen, Bent ; Demétrio, Clarice G.B. ; Kristensen, Erik ; Banta, Gary T. ; Petersen, Hans Christian ; Delefosse, Matthieu |
Published in: |
Statistics & Probability Letters. - Elsevier, ISSN 0167-7152. - Vol. 81.2011, 7, p. 749-758
|
Publisher: |
Elsevier |
Keywords: | Generalized linear model Newton scoring algorithm Power variance function Species abundance data Tweedie distribution |
Saved in:
Saved in favorites
Similar items by person
-
A note on water control in Denmark
Kristensen, Erik, (1961)
-
Moderne strømninger inden for den landbrugs-økonomiske forskning i U. S. A.
Kristensen, Erik, (1963)
-
Skibsværftet Helsingør : et eskperiment
Jørgensen, Bent, (1983)
- More ...