Big data driven jobs remaining time prediction in discrete manufacturing system : a deep learning-based approach
Year of publication: |
2020
|
---|---|
Authors: | Fang, Weiguang ; Guo, Yu ; Liao, Wenhe ; Ramani, Karthik ; Huang, Shaohua |
Published in: |
International journal of production research. - London [u.a.] : Taylor & Francis, ISSN 1366-588X, ZDB-ID 1485085-0. - Vol. 58.2020, 9, p. 2751-2766
|
Subject: | big data | deep learning | job shop | jobs remaining time prediction | stacked sparse autoencoder | Big Data | Big data | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Algorithmus | Algorithm | Produktionssystem | Manufacturing system | Data Mining | Data mining |
-
Forecasting with Artificial Intelligence : Theory and Applications
Hamoudia, Mohsen, (2023)
-
How machine learning can improve decisions and automate manual processes in freight forwarding
Palke, Ksenia, (2023)
-
Guidelines for assessing the value of a predictive algorithm : a case study
Ylijoki, Ossi, (2018)
- More ...
-
Liu, Daoyuan, (2023)
-
Wang, Shengbo, (2024)
-
An ASP-based product customization service systems for SMEs : a case study in construction machinery
Su, Yan, (2010)
- More ...