Block-based state-expanded network models for multi-activity shift scheduling
Year of publication: |
2024
|
---|---|
Authors: | Römer, Michael |
Published in: |
Journal of scheduling : JOS. - Dordrecht [u.a.] : Springer Science + Business Media, ISSN 1099-1425, ZDB-ID 2012329-2. - Vol. 27.2024, 4, p. 341-361
|
Subject: | Artificial Intelligence | Mixed-integer linear programming | Multi-activity shift scheduling | State-expanded networks | Scheduling-Verfahren | Scheduling problem | Künstliche Intelligenz | Artificial intelligence | Theorie | Theory | Mathematische Optimierung | Mathematical programming | Personaleinsatzplanung | Crew scheduling |
-
Learning dispatching rules using random forest in flexible job shop scheduling problems
Jun, Sungbum, (2019)
-
Approximate kernel learning uncertainty set for robust combinatorial optimization
Loger, Benoît, (2024)
-
Chen, Rong, (2024)
- More ...
-
The Value of Information in Water Quality Monitoring and Management
Luhede, Amelie, (2023)
-
Für eine umfassende Reform der Gesetzlichen Unfallversicherung
Römer, Michael, (2006)
-
Zur Reform der Sozialen Pflegeversicherung
Römer, Michael, (2006)
- More ...