Bootstrapping Autoregressive and Moving Average Parameter Estimates of Infinite Order Vector Autoregressive Processes
We consider anr-dimensional multivariate time series {yt, t[set membership, variant]Z} which is generated by an infinite order vector autoregressive process. We show that a bootstrap procedure which works by generating time series replicates via an estimated finitek-order vector autoregressive process (k-->[infinity] at an appropriate rate with the sample size) gives asymptotically valid approximations to the joint distribution of the growing set of estimated autoregressive coefficients and to the corresponding set of estimated moving average coefficients (impuls responses).
Year of publication: |
1996
|
---|---|
Authors: | Paparoditis, Efstathios |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 57.1996, 2, p. 277-296
|
Publisher: |
Elsevier |
Keywords: | bootstrap parameter estimates infinite order vector autoregressions autoregressive coefficients moving average coefficients |
Saved in:
Saved in favorites
Similar items by person
-
Vektorautokorrelationen stochastischer Prozesse und die Spezifikation von ARMA-Modellen
Paparoditis, Efstathios, (1990)
-
Validating stationarity assumptions in time series analysis by rolling local periodograms
Paparoditis, Efstathios, (2010)
-
A nonparametric test for the stationary density
Neumann, Michael H., (1998)
- More ...