Can deep learning models enhance the accuracy of agricultural price forecasting? : insights from India
Year of publication: |
2025
|
---|---|
Authors: | Paul, Ranjit Kumar ; Yeasin, Md ; Tamilselvi, C. ; Paul, A. K. ; Sharma, Purushottam ; Birthal, Pratap S. |
Published in: |
Intelligent systems in accounting, finance & management. - New York, NY [u.a.] : Wiley, ISSN 2160-0074, ZDB-ID 2379344-2. - Vol. 32.2025, 1, Art.-No. e70002, p. 1-14
|
Subject: | complex data | deep learning | machine learning | price forecasting | Künstliche Intelligenz | Artificial intelligence | Indien | India | Prognoseverfahren | Forecasting model | Lernprozess | Learning process | Agrarpreis | Agricultural price | Prognose | Forecast |
-
Tashiro, Daigo, (2019)
-
Temporal-spatial dependencies enhanced deep learning model for time series forecast
Yang, Hu, (2024)
-
Stock market prediction with deep learning : the case of China
Liu, Qingfu, (2022)
- More ...
-
Energy demand for crop production in rainfed areas
Birthal, Pratap S., (1998)
-
Krishnan, M., (1999)
-
Chand, Ramesh, (1997)
- More ...