Can ensemble machine learning methods predict stock returns for Indian banks using technical indicators?
Year of publication: |
2022
|
---|---|
Authors: | Mohapatra, Sabyasachi ; Mukherjee, Rohan ; Roy, Arindam ; Sengupta, Anirban ; Puniyani, Amit |
Published in: |
Journal of risk and financial management : JRFM. - Basel : MDPI, ISSN 1911-8074, ZDB-ID 2739117-6. - Vol. 15.2022, 8, Art.-No. 350, p. 1-16
|
Subject: | machine learning | ensemble techniques | Indian banks | stock prediction | Künstliche Intelligenz | Artificial intelligence | Indien | India | Bank | Prognoseverfahren | Forecasting model | Kapitaleinkommen | Capital income | Kapitalmarktrendite | Capital market returns |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/jrfm15080350 [DOI] hdl:10419/274872 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
The cross-section of Indian stock returns : evidence using machine learning
Lalwani, Vaibhav, (2022)
-
Machine learning in portfolio decisions
Guidolin, Massimo, (2024)
-
Subsampled factor models for asset pricing : the rise of Vasa
De Nard, Gianluca, (2022)
- More ...
-
Mohapatra, Sabyasachi, (2022)
-
Sengupta, Anirban, (2011)
-
Sengupta, Anirban, (2011)
- More ...