Can multi-source heterogeneous data improve the forecasting performance of tourist arrivals amid COVID-19? : mixed-data sampling approach
Year of publication: |
2023
|
---|---|
Authors: | Wu, Jing ; Li, Mingchen ; Zhao, Erlong ; Sun, Shaolong ; Wang, Shouyang |
Published in: |
Tourism management : research, policies, practice. - Amsterdam [u.a.] : Elsevier Science, ISSN 0261-5177, ZDB-ID 802245-8. - Vol. 98.2023, p. 1-17
|
Subject: | GDFM | MIDAS | Online news | Search query data | Tourism demand forecasting | Prognoseverfahren | Forecasting model | Tourismus | Tourism | Coronavirus | Nachfrage | Demand |
-
Forecasting tourism demand with an improved mixed data sampling model
Wen, Long, (2021)
-
Forecasting tourism demand with KPCA-based web search indexes
Xie, Gang, (2021)
-
Tourism demand forecasting using tourist-generated online review data
Hu, Mingming, (2022)
- More ...
-
Zhao, Erlong, (2022)
-
Decomposition methods for tourism demand forecasting : a comparative study
Zhang, Chengyuan, (2022)
-
Sun, Haoqiang, (2024)
- More ...