Can real-time investor sentiment help predict the high-frequency stock returns? : evidence from a mixed-frequency-rolling decomposition forecasting method
Year of publication: |
2024
|
---|---|
Authors: | Cai, Yi ; Tang, Zhenpeng ; Chen, Ying |
Subject: | High-frequency stock returns | Machine learning prediction | Real-time investor sentiment | Reverse mixed-frequency data sampling | Rolling decomposition | Stock message boards | Prognoseverfahren | Forecasting model | Kapitaleinkommen | Capital income | Anlageverhalten | Behavioural finance | Börsenkurs | Share price | Künstliche Intelligenz | Artificial intelligence | Schätzung | Estimation | Zeitreihenanalyse | Time series analysis | Aktienmarkt | Stock market |
-
Polak, Kamil, (2021)
-
The role of momentum, sentiment, and economic fundamentals in forecasting bear stock market
Chen, Yi-ting, (2016)
-
Fan, Minyou, (2018)
- More ...
-
Cai, Yi, (2023)
-
Interpretable EU ETS Phase 4 prices forecasting based on deep generative data augmentation approach
Liu, Dinggao, (2024)
-
Tang, Zhenpeng, (2024)
- More ...