Can Volume Predict Bitcoin Returns and Volatility? A Quantiles-Based Approach
| Year of publication: |
2017
|
|---|---|
| Authors: | Balcilar, Mehmet |
| Other Persons: | Bouri, Elie (contributor) ; Gupta, Rangan (contributor) ; Roubaud, David (contributor) |
| Publisher: |
[2017]: [S.l.] : SSRN |
| Subject: | Volatilität | Volatility | Virtuelle Währung | Virtual currency | Kapitaleinkommen | Capital income | Prognoseverfahren | Forecasting model | Handelsvolumen der Börse | Trading volume | Börsenkurs | Share price |
| Extent: | 1 Online-Ressource (27 p) |
|---|---|
| Type of publication: | Book / Working Paper |
| Language: | English |
| Notes: | In: Economic Modelling, Forthcoming Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments January 10, 2017 erstellt |
| Classification: | C22 - Time-Series Models ; G15 - International Financial Markets |
| Source: | ECONIS - Online Catalogue of the ZBW |
-
Predicting volatility of bitcoin returns with ARCH, GARCH and EGARCH models
Yildirim, Hakan, (2023)
-
Stock market return predictability : Google pessimistic sentiments versus fear gauge
Habibah, Ume, (2017)
-
Causal relationship between bitcoin price volatility and trading volume : rolling window approach
Yamak, Nebiye, (2019)
- More ...
-
Can volume predict Bitcoin returns and volatility? : a quantiles-based approach
Balcilar, Mehmet, (2017)
-
Spillovers in higher-order moments of crude oil, gold, and bitcoin
Gillas, Konstantinos Gkillas, (2022)
-
Does global economic uncertainty matter for the volatility and hedging effectiveness of Bitcoin?
Fang, Libing, (2019)
- More ...