Can Volume Predict Bitcoin Returns and Volatility? A Quantiles-Based Approach
Year of publication: |
2017
|
---|---|
Authors: | Balcilar, Mehmet |
Other Persons: | Bouri, Elie (contributor) ; Gupta, Rangan (contributor) ; Roubaud, David (contributor) |
Publisher: |
[2017]: [S.l.] : SSRN |
Subject: | Volatilität | Volatility | Virtuelle Währung | Virtual currency | Kapitaleinkommen | Capital income | Prognoseverfahren | Forecasting model | Handelsvolumen der Börse | Trading volume | Börsenkurs | Share price |
Extent: | 1 Online-Ressource (27 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | In: Economic Modelling, Forthcoming Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments January 10, 2017 erstellt |
Classification: | C22 - Time-Series Models ; G15 - International Financial Markets |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Predicting volatility of bitcoin returns with ARCH, GARCH and EGARCH models
Yildirim, Hakan, (2023)
-
Stock market return predictability : Google pessimistic sentiments versus fear gauge
Habibah, Ume, (2017)
-
Causal relationship between bitcoin price volatility and trading volume : rolling window approach
Yamak, Nebiye, (2019)
- More ...
-
Can volume predict Bitcoin returns and volatility? : a quantiles-based approach
Balcilar, Mehmet, (2017)
-
Bouri, Elie, (2017)
-
Herding behaviour in cryptocurrencies
Bouri, Elie, (2019)
- More ...