Capturing complexity over space and time via deep learning : an application to real-time delay prediction in railways
Year of publication: |
2023
|
---|---|
Authors: | Sobrie, Léon ; Verschelde, Marijn ; Hennebel, Veerle ; Roets, Bart |
Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 310.2023, 3 (1.11.), p. 1201-1217
|
Subject: | Analytics | Complexity | Deep learning | Delays | Railway transportation | Schienenverkehr | Railway transport | Künstliche Intelligenz | Artificial intelligence | Lernprozess | Learning process | Prognoseverfahren | Forecasting model |
-
Extending business failure prediction models with textual website content using deep learning
Borchert, Philipp, (2023)
-
The application of deep learning to predict corporate growth
Ushio, Sumitaka, (2021)
-
Deep learning neural network for the prediction of Asian Tiger stock markets
Yap, Kok-Leong, (2021)
- More ...
-
Explainable real-time predictive analytics on employee workload in digital railway control rooms
Sobrie, Léon, (2024)
-
Roets, Bart, (2018)
-
Cherchye, Laurens, (2024)
- More ...