CCAR-Consistent Yield Curve Stress Testing : From Nelson-Siegel to Machine Learning
Year of publication: |
2019
|
---|---|
Authors: | Abramov, Vilen |
Other Persons: | Atchison, Christopher (contributor) ; Bian, Zhengye (contributor) |
Publisher: |
[2019]: [S.l.] : SSRN |
Subject: | Zinsstruktur | Yield curve | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Kapitaleinkommen | Capital income | Stresstest | Stress test | Öffentliche Anleihe | Public bond |
Extent: | 1 Online-Ressource (26 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments June 21, 2019 erstellt |
Classification: | C61 - Optimization Techniques; Programming Models; Dynamic Analysis ; C63 - Computational Techniques ; C53 - Forecasting and Other Model Applications ; C45 - Neural Networks and Related Topics |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Machine Learning, the Treasury Yield Curve and Recession Forecasting
Puglia, Michael, (2020)
-
Bond Risk Premia with Machine Learning
Bianchi, Daniele, (2020)
-
Machine Learning at Central Banks
Chakraborty, Chiranjit, (2017)
- More ...
-
Abramov, Vilen, (2020)
-
Environmental justice: insights from an interdisciplinary instructional workshop
Darby, Kate, (2014)
-
A Practical Guide to Market Risk Model Validations (Part I - Introduction)
Abramov, Vilen, (2017)
- More ...