Chebyshev interpolation for parametric option pricing
Year of publication: |
July 2018
|
---|---|
Authors: | Gaß, Maximilian ; Glau, Kathrin ; Mahlstedt, Mirco ; Mair, Maximilian |
Published in: |
Finance and stochastics. - Berlin : Springer, ISSN 0949-2984, ZDB-ID 1356339-7. - Vol. 22.2018, 3, p. 701-731
|
Subject: | Multivariate option pricing | Complexity reduction | (Tensorized) Chebyshev polynomials | Polynomial interpolation | Fourier transform methods | Monte Carlo | Parametric Monte Carlo | Online-offline decomposition | Optionspreistheorie | Option pricing theory | Monte-Carlo-Simulation | Monte Carlo simulation | Schätztheorie | Estimation theory |
-
Monte Carlo methods via a dual approach for some discrete time stochastic control problems
Gyurkó, Lajos Gergely, (2015)
-
Methods for computing numerical standard errors : review and application to value-at-risk estimation
Ardia, David, (2018)
-
Wiener chaos expansion and numerical solutions of the Heath-Jarrow-Morton interest rate model
Kalpinelli, Evangelia A., (2016)
- More ...
-
Complexity reduction for calibration to American options
Burkovska, Olena, (2019)
-
PIDE methods and concepts for parametric option pricing
Gaß, Maximilian, (2016)
-
On the primal-dual algorithm for callable Bermudan options
Mair, Maximilian, (2013)
- More ...