Classification of intraday s&p500 returns with a random forest
Year of publication: |
2019
|
---|---|
Authors: | Lohrmann, Christoph ; Luukka, Pasi |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 35.2019, 1, p. 390-407
|
Subject: | Feature selection | Financial markets | Forecasting | Machine learning | Trading strategy | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Anlageverhalten | Behavioural finance | Finanzmarkt | Financial market | Klassifikation | Classification | Portfolio-Management | Portfolio selection | Kapitaleinkommen | Capital income |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Notes: | Erratum enthalten in: Volume 37, issue 3 (July/September 2021), Seite 1300-1301 |
Other identifiers: | 10.1016/j.ijforecast.2018.08.004 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Supervised autoencoder MLP for financial time series forecasting
Bieganowski, Bartosz, (2024)
-
Asset return prediction via machine learning
Zhang, Liangliang, (2019)
-
Machine Learning in Financial Market Risk : VaR Exception Classification Model
Xiong, Wei, (2022)
- More ...
-
Strategic interpretation on sustainability issues – eliciting cognitive maps of boards of directors
Bergman, Jukka-Pekka, (2016)
-
Bergman, Jukka-Pekka, (2016)
-
Value of knowledge--Technology strategies in different knowledge regimes
Kyläheiko, Kalevi, (2011)
- More ...