Classification, ranking, and top-K stability of recommendation algorithms
Year of publication: |
2016
|
---|---|
Authors: | Adomavicius, Gediminas ; Zhang, Jingjing |
Published in: |
INFORMS journal on computing : JOC. - Catonsville, MD : INFORMS, ISSN 1091-9856, ZDB-ID 1316077-1. - Vol. 28.2016, 1, p. 129-147
|
Subject: | recommender systems | evaluation of recommender systems | classification stability | ranking stability | top-K stability | Personalisierung | Personalization | Ranking-Verfahren | Ranking method | Klassifikation | Classification | Algorithmus | Algorithm | Theorie | Theory | Bewertung | Evaluation |
-
Research on recommendation algorithm based on ranking learning
Zhang, Xiaoli, (2019)
-
FAMCD : afusion approach of MCDM methods to rank multiclass classification algorithms
Peng, Yibing, (2011)
-
Welfare effects of personalized rankings
Donnelly, Robert, (2024)
- More ...
-
Longitudinal impact of preference biases on recommender systems’ performance
Zhou, Meizi, (2024)
-
Adomavicius, Gediminas, (2022)
-
Do recommender systems manipulate consumer preferences? : a study of anchoring effects
Adomavicius, Gediminas, (2013)
- More ...