Combining probabilistic forecasts of intermittent demand
Year of publication: |
2024
|
---|---|
Authors: | Wang, Shengjie ; Kang, Yanfei ; Petropoulos, Fotios |
Published in: |
European journal of operational research : EJOR. - Amsterdam [u.a.] : Elsevier, ISSN 0377-2217, ZDB-ID 1501061-2. - Vol. 315.2024, 3 (16.6.), p. 1038-1048
|
Subject: | Forecasting | Forecasting combination | Intermittent demand | Inventory management | Probabilistic forecasting | Prognoseverfahren | Forecasting model | Nachfrage | Demand | Theorie | Theory | Bestandsmanagement | Lagermanagement | Warehouse management | Prognose | Forecast | Lagerhaltungsmodell | Inventory model |
-
Forecasting intermittent demand for inventory management by retailers : a new approach
Tian, Xin, (2021)
-
Brüggen, Alexander, (2021)
-
Forecasting intermittent inventory demands : simple parametric methods vs. bootstrapping
Syntetos, Aris A., (2015)
- More ...
-
Exploring the representativeness of the M5 competition data
Theodorou, Evangelos, (2022)
-
Feature-based intermittent demand forecast combinations : accuracy and inventory implications
Li, Li, (2023)
-
Déjà vu : a data-centric forecasting approach through time series cross-similarity
Kang, Yanfei, (2021)
- More ...