Combining survey and census data for improved poverty prediction using semi-supervised deep learning
| Year of publication: |
2025
|
|---|---|
| Authors: | Echevin, Damien ; Fotso, Guy ; Bouroubi, Yacine ; Coulombe, Harold ; Li, Qing |
| Published in: |
Journal of development economics. - Amsterdam [u.a.] : Elsevier, ISSN 0304-3878, ZDB-ID 1490996-0. - Vol. 172.2025, Art.-No. 103385, p. 1-17
|
| Subject: | Deep learning | Machine learning | Poverty prediction | Pseudo-labeling | Semi-supervised learning | Armut | Poverty | Künstliche Intelligenz | Artificial intelligence | Lernprozess | Learning process | Prognoseverfahren | Forecasting model | Lernen | Learning |
-
Semi-supervised discovery of DNN-based outcome predictors from scarcely-labeled process logs
Folino, Francesco, (2022)
-
Drakaki, Maria, (2022)
-
Predicting Amazon customer reviews with deep confidence using deep learning and conformal prediction
Norinder, Ulf, (2022)
- More ...
-
Is poverty predictable with machine learning? : a study of DHS data from Kyrgyzstan
Li, Qing, (2022)
-
An investment-growth asset pricing model
Li, Qing, (2001)
-
A theoretical approach to inference based on maximum observations
Qing, Li, (2004)
- More ...