Comparing Deep Neural Network and Econometric Approaches to Predicting the Impact of Climate Change on Agricultural Yield
Year of publication: |
2020
|
---|---|
Authors: | Keane, Michael P. ; Neal, Timothy |
Publisher: |
[S.l.] : SSRN |
Subject: | Klimawandel | Climate change | Neuronale Netze | Neural networks | Prognoseverfahren | Forecasting model | Landwirtschaft | Agriculture | Agrarproduktion | Agricultural production | Ernteertrag | Crop yield |
Extent: | 1 Online-Ressource (22 p) |
---|---|
Series: | UNSW Economics Working Paper ; 2020-02 |
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments January 15, 2020 erstellt |
Other identifiers: | 10.2139/ssrn.3521260 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Keane, Michael P., (2020)
-
Model estimates of climate impact on grain and leguminous crops yield in the regions of Russia
Siptits, S. O., (2021)
-
Climate change and the distribution of agricultural output
Costa, Francisco, (2020)
- More ...
-
Child work and cognitive development: Results from four low to middle income countries
Keane, Michael P., (2022)
-
The impact of child work on cognitive development: Results from four low to middle income countries
Keane, Michael P., (2018)
-
Keane, Michael P., (2020)
- More ...