Comparing out-of-sample performance of machine learning methods to forecast U.S. GDP growth
Year of publication: |
2023
|
---|---|
Authors: | Chu, Ba ; Qureshi, Shafiullah |
Published in: |
Computational economics. - Dordrecht [u.a.] : Springer Science + Business Media B.V., ISSN 1572-9974, ZDB-ID 1477445-8. - Vol. 62.2023, 4, p. 1567-1609
|
Subject: | Artificial neural networks | Boosting algorithms | Dimensionality reduction methods | GDP growth | Lasso | MIDAS | Random forest | Ridge regression | Neuronale Netze | Neural networks | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Wirtschaftswachstum | Economic growth | Nationaleinkommen | National income | USA | United States | Regressionsanalyse | Regression analysis | Algorithmus | Algorithm | Prognose | Forecast |
-
Nowcasting domestic liquidity in the Philippines using machine learning algorithms
Reyes, Juan Rufino M., (2022)
-
Zhang, Fan, (2022)
-
Quantile regression analysis to predict GDP distribution using data from the US and UK
Thi Huyen Tran, (2022)
- More ...
-
Predicting the COVID-19 pandemic in Canada and the US
Chu, Ba, (2020)
-
Forecasting Canadian GDP growth using XGBoost
Qureshi, Shafiullah, (2020)
-
Forecasting Canadian GDP growth with machine learning
Qureshi, Shafiullah, (2021)
- More ...