Comparing predictive accuracy under long memory, with an application to valatility forecasting
Year of publication: |
2019
|
---|---|
Authors: | Kruse, Robinson ; Leschinski, Christian ; Will, Michael |
Published in: |
Journal of financial econometrics. - Oxford : Oxford University Press, ISSN 1479-8417, ZDB-ID 2065613-0. - Vol. 17.2019, 2, p. 180-228
|
Subject: | Diebold–Mariano test | equal predictive accuracy | long memory | long-run variance estimation | realized volatility | Zeitreihenanalyse | Time series analysis | Prognoseverfahren | Forecasting model | Volatilität | Volatility | Schätzung | Estimation | Schätztheorie | Estimation theory | Statistischer Test | Statistical test | ARCH-Modell | ARCH model |
-
Comparing predictive accuracy under long memory : with an application to volatility forecasting
Kruse, Robinson, (2016)
-
Modeling CAC40 volatility using ultra-high frequency data
Degiannakis, Stavros, (2013)
-
Modeling and forecasting persistent financial durations
Zikes, Filip, (2015)
- More ...
-
Comparing predictive accuracy under long memory: With an application to volatility forecasting
Kruse, Robinson, (2016)
-
Comparing predictive accuracy under long memory : with an application to volatility forecasting
Kruse, Robinson, (2016)
-
Comparing predictive accuracy under long memory : with an application to volatility forecasting
Kruse, Robinson, (2016)
- More ...