Comparing predictive accuracy under long memory : with an application to volatility forecasting
Year of publication: |
February 11, 2016
|
---|---|
Authors: | Kruse, Robinson ; Leschinski, Christian ; Will, Michael |
Publisher: |
Hannover : Wirtschaftswissenschaftliche Fakultät der Leibniz Universität Hannover |
Subject: | Equal Predictive Ability | Long Memory | Diebold-Mariano Test | Long-run Variance Estimation | Realized Volatility | Volatilität | Volatility | Zeitreihenanalyse | Time series analysis | Prognoseverfahren | Forecasting model | Schätztheorie | Estimation theory | ARCH-Modell | ARCH model | Schätzung | Estimation | Statistischer Test | Statistical test | Kapitaleinkommen | Capital income |
-
Modeling and forecasting S&P 500 volatility : long memory, structural breaks and nonlinearity
Martens, Martin, (2004)
-
Modeling autoregressive processes with moving-quantiles-implied nonlinearity
Ishida, Isao, (2015)
-
High frequency vs. daily resolution : the economic value of forecasting volatility models
Lilla, Francesca, (2016)
- More ...
-
Comparing predictive accuracy under long memory: With an application to volatility forecasting
Kruse, Robinson, (2016)
-
Comparing predictive accuracy under long memory : with an application to volatility forecasting
Kruse, Robinson, (2016)
-
Comparing predictive accuracy under long memory, with an application to valatility forecasting
Kruse, Robinson, (2019)
- More ...