Complexity and approximation results for the balance optimization subset selection model for causal inference in observational studies
Year of publication: |
2014
|
---|---|
Authors: | Sauppe, Jason J. ; Jacobson, Sheldon H. ; Sewell, Edward C. |
Published in: |
INFORMS journal on computing : JOC. - Catonsville, MD : INFORMS, ISSN 1091-9856, ZDB-ID 1316077-1. - Vol. 26.2014, 3, p. 547-566
|
Subject: | observational studies | causal inference | comparative effectiveness research | matching | fine balance | balance optimization | mixed integer programming | computational complexity | approximation algorithms | Kausalanalyse | Causality analysis | Mathematische Optimierung | Mathematical programming | Ganzzahlige Optimierung | Integer programming | Induktive Statistik | Statistical inference | Algorithmus | Algorithm | Schätztheorie | Estimation theory |
-
Algorithm is experiment : machine learning, market design, and policy eligibility rules
Narita, Yusuke, (2021)
-
Han, Kevin, (2024)
-
Islam, Md Saiful, (2022)
- More ...
-
An optimization approach for making causal inferences
Cho, Wendy K. Tam, (2013)
-
Nikolaev, Alexander G., (2013)
-
An optimization approach for making causal inferences
Tam Cho, Wendy K., (2013)
- More ...