Compound Poisson approximation to weighted sums of symmetric discrete variables
The weighted sum <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$S=w_1S_1+w_2S_2+\cdots +w_NS_N$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi>S</mi> <mo>=</mo> <msub> <mi>w</mi> <mn>1</mn> </msub> <msub> <mi>S</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>w</mi> <mn>2</mn> </msub> <msub> <mi>S</mi> <mn>2</mn> </msub> <mo>+</mo> <mo>⋯</mo> <mo>+</mo> <msub> <mi>w</mi> <mi>N</mi> </msub> <msub> <mi>S</mi> <mi>N</mi> </msub> </mrow> </math> </EquationSource> </InlineEquation> is approximated by compound Poisson distribution. Here <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$S_i$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi>S</mi> <mi>i</mi> </msub> </math> </EquationSource> </InlineEquation> are sums of symmetric independent identically distributed discrete random variables, and <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$w_i$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi>w</mi> <mi>i</mi> </msub> </math> </EquationSource> </InlineEquation> denote weights. The estimates take into account the smoothing effect that sums <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$S_i$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi>S</mi> <mi>i</mi> </msub> </math> </EquationSource> </InlineEquation> have on each other. Copyright The Institute of Statistical Mathematics, Tokyo 2015
Year of publication: |
2015
|
---|---|
Authors: | Elijio, A. ; Čekanavičius, V. |
Published in: |
Annals of the Institute of Statistical Mathematics. - Springer. - Vol. 67.2015, 1, p. 195-210
|
Publisher: |
Springer |
Subject: | Concentration function | Compound Poisson distribution | Kolmogorov norm | Weighted random variables |
Saved in:
Saved in favorites
Similar items by subject
-
Robust Bayesian analysis given priors on partition sets
Carota, Cinzia, (1994)
-
Compound Binomial Approximations
Čekanavičius, Vydas, (2006)
-
Knobloch, Ralf, (2021)
- More ...