Computing deltas without derivatives
Year of publication: |
April 2017
|
---|---|
Authors: | Baños, D. ; Meyer-Brandis, T. ; Proske, Frank ; Duedahl, S. |
Published in: |
Finance and stochastics. - Berlin : Springer, ISSN 0949-2984, ZDB-ID 1356339-7. - Vol. 21.2017, 2, p. 509-549
|
Subject: | Greeks | Delta | Option sensitivities | Malliavin calculus | Bismut-Elworthy-Li formula | Irregular diffusion coefficients | Strong solutions of stochastic differential equations | Relative L2-compactness | Analysis | Mathematical analysis | Optionspreistheorie | Option pricing theory | Stochastischer Prozess | Stochastic process | Derivat | Derivative | Black-Scholes-Modell | Black-Scholes model | Finanzmathematik | Mathematical finance | Optionsgeschäft | Option trading |
-
Volatility risk structure for options depending on extrema
Nakatsu, Tomonori, (2017)
-
A second-order discretization with Malliavin weight and Quasi-Monte Carlo method for option pricing
Yamada, Toshihiro, (2020)
-
Yousuf, M., (2023)
- More ...
-
UTILITY INDIFFERENCE PRICING OF INTEREST-RATE GUARANTEES
BENTH, FRED ESPEN, (2009)
-
Sensitivity analysis in a market with memory
Banos, David R., (2013)
-
Explicit Representation of the Minimal Variance Portfolio in Markets Driven by Lévy Processes
Benth, Fred Espen, (2003)
- More ...