Condition-based production for stochastically deteriorating systems : optimal policies and learning
Year of publication: |
2024
|
---|---|
Authors: | Drent, Collin ; Drent, Melvin ; Arts, Joachim |
Published in: |
Manufacturing & service operations management : M & SOM. - Linthicum, Md. : Informs, ISSN 1526-5498, ZDB-ID 2023273-1. - Vol. 26.2024, 3, p. 1137-1156
|
Subject: | Bayesian learning | maintenance | Markov decision process | optimal production control | revenue management | Theorie | Theory | Revenue-Management | Revenue management | Markov-Kette | Markov chain | Instandhaltung | Maintenance policy | Lernprozess | Learning process | Entscheidung | Decision | Produktionssteuerung | Production control | Lagerhaltungsmodell | Inventory model | Bayes-Statistik | Bayesian inference | Mathematische Optimierung | Mathematical programming | Dynamische Optimierung | Dynamic programming |
-
Wang, Kangzhou, (2013)
-
A numerical study of Markov decision process algorithms for multi-component replacement problems
Andersen, Jesper Fink, (2022)
-
Real-time integrated learning and decision making for cumulative shock degradation
Drent, Collin, (2023)
- More ...
-
Real-time integrated learning and decision making for cumulative shock degradation
Drent, Collin, (2023)
-
Optimal data pooling for shared learning in maintenance operations
Drent, Collin, (2024)
-
Efficient emission reduction through dynamic supply mode selection
Drent, Melvin, (2023)
- More ...