Constraint learning approaches to improve the approximation of the capacity consumption function in lot-sizing models
| Year of publication: |
2025
|
|---|---|
| Authors: | Tremblet, David ; Thevenin, Simon ; Dolgui, Alexandre |
| Published in: |
European journal of operational research : EJOR. - Amsterdam [u.a.] : Elsevier, ISSN 0377-2217, ZDB-ID 1501061-2. - Vol. 322.2025, 2 (16.4.), p. 679-692
|
| Subject: | Scheduling | Data-driven methods | Lot-sizing | Machine learning | Production planning | Theorie | Theory | Produktionsplanung | Künstliche Intelligenz | Artificial intelligence | Losgröße | Lot size | Produktionssteuerung | Production control | Scheduling-Verfahren | Scheduling problem |
-
Single-machine capacitated lot-sizing and scheduling with delivery dates and quantities
Boctor, Fayez F., (2022)
-
Minimizing setups and waste when printing labels of consumer goods
Meyr, Herbert, (2021)
-
Simultaneous lot sizing and scheduling in the animal feed premix industry
Milenković, Miloš, (2023)
- More ...
-
Makespan estimation in a flexible job-shop scheduling environment using machine learning
Tremblet, David, (2024)
-
Workforce reconfiguration strategies in manufacturing systems : a state of the art
Hashemi-Petroodi, S. Ehsan, (2021)
-
Robust optimization for lot-sizing problems under yield uncertainty
Metzker, Paula, (2021)
- More ...