Continuous-Time Speed for Discrete-Time Models : A Markov-Chain Approximation Method
Year of publication: |
2022
|
---|---|
Authors: | Bakota, Ivo ; Kredler, Matthias |
Publisher: |
[S.l.] : SSRN |
Extent: | 1 Online-Ressource (63 p) |
---|---|
Series: | MEA Discussion Paper ; No. 01-2022 |
Type of publication: | Book / Working Paper |
Language: | German |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments 2022 erstellt |
Other identifiers: | 10.2139/ssrn.4155499 [DOI] |
Classification: | C60 - Mathematical Methods and Programming. General ; C61 - Optimization Techniques; Programming Models; Dynamic Analysis ; C73 - Stochastic and Dynamic Games ; E21 - Consumption; Saving ; G11 - Portfolio Choice |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Expected Returns Independent Allocations
Susinno, Gabriele, (2015)
-
Optimising Asset Allocation between Hedge Funds and Private Equity
Susinno, Gabriele, (2015)
-
Demystifying Rebalancing Premium : A Methodological Path to Risk Premia Engineering
Dubikovsky, Vladislav, (2015)
- More ...
-
Continuous-time speed for discrete-time models : a Markov-chain approximation method
Bakota, Ivo, (2022)
-
Market Clearing and Krusell-Smith Algorithm in an Economy with Multiple Assets
Bakota, Ivo, (2022)
-
Market clearing and Krusell-Smith algorithm in an economy with multiple assets
Bakota, Ivo, (2023)
- More ...