Cores of effectivity functions and implementation theory
In a committee where cooperative voting occurs, effectivity functions describe the blocking power of coalitions. It is a binary relation that says for each coalition T and each subset of outcomes B whether or not T can force the final outcome within B. The corresponding cooperative stability notion generalizes the familiar core of a simple game. We study those effectivity functions yielding a non-empty core for all preference profiles, of which additive effectivity functions are an example. This proves to be closely related to implementation by means of the strong equilibrium concept.