We describe multistage Markov chain Monte Carlo (MSMCMC) procedures which, in addition to estimating the total number of contingency tables with given positive row and column sums, estimate the number, <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$Q$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi>Q</mi> </mrow> </math> </EquationSource> </InlineEquation>, and the proportion, <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$P$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi>P</mi> </mrow> </math> </EquationSource> </InlineEquation>, of those tables that satisfy an additional, possibly, nonlinear constraint. Three Options, A, B, and C, are studied. Options A and B exploit locally optimal statistical properties whereas judicious assignment of a particular parameter of Option C allows estimation with approximately minimal standard error. Ten examples of varying dimensions and total entries illustrate and compare the procedures, where <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$Q$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi>Q</mi> </mrow> </math> </EquationSource> </InlineEquation> and <InlineEquation ID="IEq5"> <EquationSource Format="TEX">$$P$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi>P</mi> </mrow> </math> </EquationSource> </InlineEquation> denote the number and proportion of chi-squared statistics less than a given value. For both small and large dimensional tables, the comparisons favor Options A and B for moderate <InlineEquation ID="IEq6"> <EquationSource Format="TEX">$$P$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi>P</mi> </mrow> </math> </EquationSource> </InlineEquation> and Option C for small <InlineEquation ID="IEq7"> <EquationSource Format="TEX">$$P$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi>P</mi> </mrow> </math> </EquationSource> </InlineEquation>. Additional comparison with sequential importance sampling estimates favors the latter for small dimensional tables and moderate <InlineEquation ID="IEq8"> <EquationSource Format="TEX">$$P$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi>P</mi> </mrow> </math> </EquationSource> </InlineEquation> but favors Option C for large dimensional tables for both small and moderate <InlineEquation ID="IEq9"> <EquationSource Format="TEX">$$P$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi>P</mi> </mrow> </math> </EquationSource> </InlineEquation>. The proposed options extend an earlier MSMCMC technique for estimating total count and, in principle, can be further extended to incorporate additional constraints. Copyright Springer-Verlag Berlin Heidelberg 2014