Credit line exposure at default modelling using Bayesian mixed effect quantile regression
Year of publication: |
2022
|
---|---|
Authors: | Betz, Jennifer ; Nagl, Maximilian ; Rösch, Daniel |
Published in: |
Journal of the Royal Statistical Society: Series A (Statistics in Society). - Hoboken, NJ : Wiley, ISSN 1467-985X. - Vol. 185.2022, 4, p. 2035-2072
|
Publisher: |
Hoboken, NJ : Wiley |
Subject: | credit conversion factor | credit risk | exposure at default | global credit data | quantile regression | random effects |
-
Matenda, Frank Ranganai, (2021)
-
Gürtler, Marc, (2018)
-
Opening the black box : quantile neural networks for loss given default prediction
Kellner, Ralf, (2022)
- More ...
-
Deep calibration of financial models: turning theory into practice
Büchel, Patrick, (2021)
-
Statistical and machine learning for credit and market risk management
Nagl, Maximilian, (2022)
-
Time varying dependences between real estate crypto, real estate and crypto returns
Nagl, Cathrine, (2024)
- More ...