Data-driven prediction of relevant scenarios for robust combinatorial optimization
Year of publication: |
2025
|
---|---|
Authors: | Goerigk, Marc ; Kurtz, Jannis |
Published in: |
Computers & operations research : an international journal. - Amsterdam [u.a.] : Elsevier, ISSN 0305-0548, ZDB-ID 1499736-8. - Vol. 174.2025, Art.-No. 106886, p. 1-14
|
Subject: | Data-driven optimization | Machine learning for optimization | Robust optimization | Two-stage robust optimization | Robustes Verfahren | Robust statistics | Künstliche Intelligenz | Artificial intelligence | Mathematische Optimierung | Mathematical programming | Theorie | Theory | Prognoseverfahren | Forecasting model | Algorithmus | Algorithm | Scheduling-Verfahren | Scheduling problem |
-
Robust balancing of straight assembly lines with inerval task times
Gurevsky, E., (2013)
-
The robust machine availability problem
Song, G., (2017)
-
A sequential follower refinement algorithm for robust surgery scheduling
Bansal, Ankit, (2024)
- More ...
-
Data-driven robust optimization using deep neural networks
Goerigk, Marc, (2023)
-
Faster algorithms for min-max-min robustness for combinatorial problems with budgeted uncertainty
Chassein, André, (2019)
-
Oracle-based algorithms for binary two-stage robust optimization
Kämmerling, Nicolas, (2020)
- More ...