Data Fiduciary in Order to Alleviate Principal-Agent Problems in the Artificial Big Data Age
Year of publication: |
2019
|
---|---|
Authors: | Puaschunder, Julia M. |
Publisher: |
[2019]: [S.l.] : SSRN |
Subject: | Big Data | Big data | Prinzipal-Agent-Theorie | Agency theory | Theorie | Theory | Künstliche Intelligenz | Artificial intelligence |
Extent: | 1 Online-Ressource (46 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments October 5, 2019 erstellt |
Other identifiers: | 10.2139/ssrn.3464968 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
A bibliometric analysis of machine learning econometrics in asset pricing
Zapata, Hector O., (2022)
-
Identifying market structure : a deep network representation learning of social engagement
Yang, Yi, (2022)
-
Risk analysis for large pools of loans
Sirignano, Justin, (2019)
- More ...
-
Puaschunder, Julia M., (2017)
-
Puaschunder, Julia M., (2017)
-
Puaschunder, Julia M., (2018)
- More ...