Data mining-based financial statement fraud detection : systematic literature review and meta-analysis to estimate data sample mapping of fraudulent companies against non-fraudulent companies
Year of publication: |
2024
|
---|---|
Authors: | Gupta, Sonika ; Mehta, Sushil Kumar |
Published in: |
Global business review. - New Delhi [u.a.] : SAGE Publ., ISSN 0973-0664, ZDB-ID 2211884-6. - Vol. 25.2024, 5, p. 1290-1313
|
Subject: | Classification accuracy | data mining | data sample mapping scheme | financial statement frauds | machine learning approaches | statistical approaches | Bilanzdelikt | Accounting fraud | Data Mining | Data mining | Klassifikation | Classification | Stichprobenerhebung | Sampling | Meta-Analyse | Meta-analysis | Bibliometrie | Bibliometrics | Künstliche Intelligenz | Artificial intelligence | Betrug | Fraud | Wirtschaftsprüfung | Financial audit |
-
Application and use of Big Data and Artificial Intelligence (AI) in fraud detection and avoidance
Halbouni, Sawsan Saadi, (2020)
-
Gray, Glen L., (2014)
-
Identification of fraudulent financial statements through a multi-label classification approach
Tragouda, Maria, (2024)
- More ...
-
Gupta, Sonika, (2024)
-
Dar, Aijaz Ahmad, (2019)
-
Impact of Self Help Groups in Jammu, India
Singh, Amrinder, (2012)
- More ...