Data science for insurance fraud detection : a review
Year of publication: |
2025
|
---|---|
Authors: | Banulescu-Radu, Denisa ; Kougblenou, Yannick |
Published in: |
Handbook of Insurance : Volume I. - Cham : Springer Nature Switzerland, ISBN 978-3-031-69561-2. - 2025, p. 417-446
|
Subject: | Cost-sensitive learning | Imbalanced data | Insurance fraud detection | Machine learning | Künstliche Intelligenz | Artificial intelligence | Versicherungsbetrug | Insurance fraud | Betrug | Fraud | Versicherung | Insurance | Data Mining | Data mining |
-
Detecting insurance fraud using supervised and unsupervised machine learning
Debener, Jörn, (2023)
-
Banulescu-Radu, Denisa, (2024)
-
Insurance fraud detection : evidence from artificial intelligence and machine learning
Aslam, Faheem, (2022)
- More ...
-
Do we need high frequency data to forecast variances?
Banulescu-Radu, Denisa, (2016)
-
Do high-frequency-based measures improve conditional covariance forecasts?
Banulescu-Radu, Denisa, (2019)
-
Backtesting marginal expected shortfall and related systemic risk measures
Banulescu-Radu, Denisa, (2021)
- More ...