Dealing with weighting scheme in composite indicators : an unsupervised distance-machine learning proposal for quantitative data
Year of publication: |
2022
|
---|---|
Authors: | Jiménez-Fernández, Eduardo ; Sánchez, Angeles ; Ortega-Pérez, Mario |
Published in: |
Socio-economic planning sciences : the international journal of public sector decision-making. - Amsterdam [u.a.] : Elsevier, ISSN 0038-0121, ZDB-ID 208905-1. - Vol. 83.2022, p. 1-11
|
Subject: | Benchmarking | Composite indicator | MARS | P2 distance | Unsupervised machine learning | Weighting scheme | Künstliche Intelligenz | Artificial intelligence | Theorie | Theory |
-
Data-driven robust optimization using deep neural networks
Goerigk, Marc, (2023)
-
Anchoring and asymmetric information in the real estate market : a machine learning approach
Cheung, Ka Shing, (2021)
-
Information value of property description : a machine learning approach
Shen, Lily, (2021)
- More ...
-
Alamá, Luisa, (2016)
-
Vulnerability of Olive Municipalities in Southern Spain
Jiménez-Fernández, Eduardo, (2022)
-
Challenges in the construction of composite indicators
Sánchez, Angeles, (2020)
- More ...