Deep learning-driven scheduling algorithm for a single machine problem minimizing the total tardiness
| Year of publication: |
2023
|
|---|---|
| Authors: | Bouška, Michal ; Šůcha, Přemysl ; Novak, Antonin ; Hanzálek, Zdeněk |
| Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 308.2023, 3 (1.8.), p. 990-1006
|
| Subject: | Deep neural networks | Machine learning | Scheduling | Single machine | Total tardiness | Scheduling-Verfahren | Scheduling problem | Neuronale Netze | Neural networks | Künstliche Intelligenz | Artificial intelligence | Algorithmus | Algorithm | Theorie | Theory | Produktionssteuerung | Production control | Durchlaufzeit | Lead time | Evolutionärer Algorithmus | Evolutionary algorithm |
-
Yamashiro, Hirochika, (2021)
-
Fernandez-Viagas, Victor, (2017)
-
Scheduling with periodic availability constraints to minimize makespan
Yu, Lishi, (2024)
- More ...
-
Minimizing the weighted number of tardy jobs on a single machine : strongly correlated instances
Hejl, Lukáš, (2022)
-
Accelerating the branch-and-price algorithm using machine learning
Václavík, Roman, (2018)
-
Scheduling jobs with normally distributed processing times on parallel machines
Novak, Antonin, (2022)
- More ...