Deep learning predictive models for terminal call rate prediction during the warranty period
Year of publication: |
2020
|
---|---|
Authors: | Ferencek, Aljaž ; Kofjač, Davorin ; Škraba, Andrej ; Sašek, Blaž ; Kljajić Borštnar, Mirjana |
Published in: |
Business systems research : a system view accross technology & economics : the journal of Society for Advancing Innovation and Research in Economy. - Warsaw : De Gruyter, Versita, ISSN 1847-9375, ZDB-ID 2759390-3. - Vol. 11.2020, 2, p. 36-50
|
Subject: | manufacturing | product lifecycle | management product failure | machine learning | prediction | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Produktlebenszyklus | Product life cycle | Produktmanagement | Product management | Lernprozess | Learning process | Lernen | Learning |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.2478/bsrj-2020-0014 [DOI] |
Classification: | C45 - Neural Networks and Related Topics ; C53 - Forecasting and Other Model Applications |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Swag: a wrapper method for sparse learning
Molinari, Roberto, (2020)
-
Persistence in factor-based supervised learning models
Coqueret, Guillaume, (2022)
-
Machine learning algorithms for predicting unemployment duration in Russia
Maigur, Anna A., (2024)
- More ...
-
Categorisation of open government data literature
Ferencek, Aljaž, (2022)
-
The relevance of facilitation in group decision making supported by a simulation model
Borštnar, Mirjana Kljajić, (2011)
-
Škraba, Andrej, (2011)
- More ...