Deep learning with long short-term memory networks and random forests for demand forecasting in multi-channel retail
| Year of publication: |
2020
|
|---|---|
| Authors: | Punia, Sushil ; Nikolopoulos, Konstantinos ; Singh, Surya Prakash ; Madaan, Jitendra K. ; Litsiou, Konstantia |
| Published in: |
International journal of production research. - London [u.a.] : Taylor & Francis, ISSN 1366-588X, ZDB-ID 1485085-0. - Vol. 58.2020, 16, p. 4964-4979
|
| Subject: | retail | deep learning | LSTM networks | multi-channel | random forests | Einzelhandel | Retail trade | Vertriebsweg | Distribution channel | Künstliche Intelligenz | Artificial intelligence | Lernprozess | Learning process | Theorie | Theory |
-
Intelligent Retail : The Future of Stationary Retail
Heinemann, Gerrit, (2023)
-
Geo-marketing segmentation with deep learning
Ansari, Oussama Benbrahim, (2021)
-
Deep neural networks, gradient-boosted trees, random forests : statistical arbitrage on the S&P 500
Krauss, Christopher, (2017)
- More ...
-
Forecasting : theory and practice
Petropoulos, Fotios, (2022)
-
Relative performance of judgmental methods for forecasting the success of megaprojects
Litsiou, Konstantia, (2022)
-
Litsiou, Konstantia, (2025)
- More ...