Deep learning with long short-term memory networks and random forests for demand forecasting in multi-channel retail
Year of publication: |
2020
|
---|---|
Authors: | Punia, Sushil ; Nikolopoulos, Konstantinos ; Singh, Surya Prakash ; Madaan, Jitendra K. ; Litsiou, Konstantia |
Subject: | retail | deep learning | LSTM networks | multi-channel | random forests | Einzelhandel | Retail trade | Vertriebsweg | Distribution channel | Künstliche Intelligenz | Artificial intelligence | Lernprozess | Learning process | Theorie | Theory |
-
Intelligent Retail : The Future of Stationary Retail
Heinemann, Gerrit, (2023)
-
Geo-marketing segmentation with deep learning
Ansari, Oussama Benbrahim, (2021)
-
Deep neural networks, gradient-boosted trees, random forests : statistical arbitrage on the S&P 500
Krauss, Christopher, (2016)
- More ...
-
An empirical investigation of water consumption forecasting methods
Karamaziotis, Panagiotis I., (2020)
-
Superforecasting reality check : evidence from a small pool of experts and expedited identification
Katsagounos, Ilias, (2021)
-
Forecasting : theory and practice
Petropoulos, Fotios, (2022)
- More ...