Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500
| Year of publication: |
2016
|
|---|---|
| Authors: | Krauss, Christopher ; Do, Xuan Anh ; Huck, Nicolas |
| Publisher: |
Nürnberg : Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute for Economics |
| Subject: | statistical arbitrage | deep learning | gradient-boosting | random forests | ensemble learning |
| Series: | FAU Discussion Papers in Economics ; 03/2016 |
|---|---|
| Type of publication: | Book / Working Paper |
| Type of publication (narrower categories): | Working Paper |
| Language: | English |
| Other identifiers: | 856307327 [GVK] hdl:10419/130166 [Handle] RePEc:zbw:iwqwdp:032016 [RePEc] |
| Source: |
-
Deep neural networks, gradient-boosted trees, random forests : statistical arbitrage on the S&P 500
Krauss, Christopher, (2016)
-
Deep neural networks, gradient-boosted trees, random forests : statistical arbitrage on the S&P 500
Krauss, Christopher, (2017)
-
Study on Ontology Ranking Models Based on the Ensemble Learning
Jie, Liu, (2018)
- More ...
-
Deep neural networks, gradient-boosted trees, random forests : statistical arbitrage on the S&P 500
Krauss, Christopher, (2017)
-
Deep neural networks, gradient-boosted trees, random forests : statistical arbitrage on the S&P 500
Krauss, Christopher, (2016)
-
Pairs trading and outranking : the multi-step-ahead forecasting case
Huck, Nicolas, (2010)
- More ...