Deep neural networks, gradient-boosted trees, random forests : statistical arbitrage on the S&P 500
Year of publication: |
1 June 2017
|
---|---|
Authors: | Krauss, Christopher ; Do, Xuan Anh ; Huck, Nicolas |
Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 259.2017, 2 (1.6.), p. 689-702
|
Subject: | Finance | Deep learning | Gradient-boosting | Random Forests | Ensemble learning | Neuronale Netze | Neural networks | Theorie | Theory | Forstwirtschaft | Forestry | Künstliche Intelligenz | Artificial intelligence | Lernprozess | Learning process | Arbitrage | Forstpolitik | Forest policy |
-
Deep neural networks, gradient-boosted trees, random forests : statistical arbitrage on the S&P 500
Krauss, Christopher, (2016)
-
Neural networks and arbitrage in the VIX : a deep learning approach for the VIX
Osterrieder, Joerg, (2020)
-
Artificial intelligence in asset management
Bartram, Söhnke M., (2020)
- More ...
-
Deep neural networks, gradient-boosted trees, random forests : statistical arbitrage on the S&P 500
Krauss, Christopher, (2016)
-
Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500
Krauss, Christopher, (2016)
-
Statistical arbitrage pairs trading strategies : review and outlook
Krauss, Christopher, (2017)
- More ...