Demand forecasting of individual probability density functions with machine learning
Year of publication: |
2021
|
---|---|
Authors: | Wick, Felix ; Kerzel, Ulrich ; Hahn, Martin ; Wolf, Moritz ; Singhal, Trapti ; Stemmer, Daniel ; Ernst, Jakob ; Feindt, Michael |
Published in: |
Operations research forum. - Cham : Springer International Publishing, ISSN 2662-2556, ZDB-ID 2978290-9. - Vol. 2.2021, 3, Art.-No. 37, p. 1-39
|
Subject: | Explainable machine learning | Retail demand forecasting | Probability distribution | Temporal confounding | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Statistische Verteilung | Statistical distribution | Wahrscheinlichkeitsrechnung | Probability theory | Nachfrage | Demand | Einzelhandel | Retail trade | Theorie | Theory | Prognose | Forecast |
-
A score-driven model of short-term demand forecasting for retail distribution centers
Hoeltgebaum, Henrique, (2021)
-
Taming data-driven probability distributions
Baruník, Jozef, (2025)
-
Forecasting Earnings with Predicted, Conditional Probability Density Functions
Hendriock, Mario, (2021)
- More ...
-
Prognosen bewerten : statistische Grundlagen und praktische Tipps
Feindt, Michael, (2015)
-
Prognosen bewerten : Statistische Grundlagen und praktische Tipps
Feindt, Michael, (2015)
-
Empirical analysis of ARMA-GARCH models in market risk estimation on high-frequency US data
Beck, Alexander, (2013)
- More ...