Density forecasting using Bayesian global vector autoregressions with stochastic volatility
Year of publication: |
July-September 2016
|
---|---|
Authors: | Huber, Florian |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 32.2016, 3, p. 818-837
|
Subject: | Density forecasting | Large panels | Factor stochastic volatility | Prognoseverfahren | Forecasting model | Volatilität | Volatility | VAR-Modell | VAR model | Bayes-Statistik | Bayesian inference | Theorie | Theory | Schätzung | Estimation | Stochastischer Prozess | Stochastic process | Statistische Verteilung | Statistical distribution | Wirtschaftsindikator | Economic indicator | Welt | World |
-
High-dimensional DSGE models : pointers on prior, estimation, comparison, and prediction
Chib, Siddhartha, (2020)
-
Kiss, Tamás, (2023)
-
Measuring international uncertainty using global vector autoregressions with drifting parameters
Pfarrhofer, Michael, (2019)
- More ...
-
General Bayesian time-varying parameter vector autoregressions for modeling government bond yields
Fischer, Manfred M., (2023)
-
Forecasting with Bayesian Global Vector Autoregressive Models: A Comparison of Priors
Cuaresma, Jesús Crespo, (2014)
-
Feldkircher, Martin, (2014)
- More ...