Design of progressively censored group sampling plans for Weibull distributions: An optimization problem
Optimization algorithms provides efficient solutions to many statistical problems. Essentially, the design of sampling plans for lot acceptance purposes is an optimization problem with several constraints, usually related to the quality levels required by the producer and the consumer. An optimal acceptance sampling plan is developed in this paper for the Weibull distribution with unknown scale parameter. The proposed plan combines grouping of items, sudden death testing in each group and progressive group removals, and its decision criterion is based on the uniformly most powerful life test. A mixed integer programming problem is first solved for determining the minimum number of failures required and the corresponding acceptance constant. The optimal number of groups is then obtained by minimizing a balanced estimation of the expected test cost. Excellent approximately optimal solutions are also provided in closed-forms. The sampling plan is considerably flexible and allows to save experimental time and cost. In general, our methodology achieves solutions that are quite robust to small variations in the Weibull shape parameter. A numerical example about a manufacturing process of gyroscopes is included for illustration.
Year of publication: |
2011
|
---|---|
Authors: | Fernández, Arturo J. ; Pérez-González, Carlos J. ; Aslam, Muhammad ; Jun, Chi-Hyuck |
Published in: |
European Journal of Operational Research. - Elsevier, ISSN 0377-2217. - Vol. 211.2011, 3, p. 525-532
|
Publisher: |
Elsevier |
Keywords: | Constrained optimization Minimal expected cost Mixed integer programming Operating characteristic function Producer's and consumer's risks Quality control |
Saved in:
Saved in favorites
Similar items by person
-
Fernández, Arturo J., (2011)
-
Fernández, Arturo J., (2011)
-
Optimal acceptance sampling plans for log-location–scale lifetime models using average risks
Fernández, Arturo J., (2012)
- More ...