Designing universal causal deep learning models : the geometric (Hyper)transformer
Year of publication: |
2024
|
---|---|
Authors: | Acciaio, Beatrice ; Kratsios, Anastasis ; Pammer, Gudmund |
Published in: |
Mathematical finance : an international journal of mathematics, statistics and financial economics. - Oxford [u.a.] : Wiley-Blackwell, ISSN 1467-9965, ZDB-ID 1481288-5. - Vol. 34.2024, 2, p. 671-735
|
Subject: | adapted optimal transport | geometric deep learning | hypernetworks | metric geometry | random projection | stochastic processes | transformer networks | universal approximation | Theorie | Theory | Stochastischer Prozess | Stochastic process | Lernprozess | Learning process | Künstliche Intelligenz | Artificial intelligence | Hochschule | Higher education institution |
-
Moradi, Amir Mohammad, (2017)
-
Deep Learning and Stochastic Mean-Field Control for a Neural Network Model
Agram, Nacira, (2020)
-
Will artificial intelligence replace computational economists any time soon?
Maliar, Lilia, (2019)
- More ...
-
Weak transport for non‐convex costs and model‐independence in a fixed‐income market
Acciaio, Beatrice, (2021)
-
Deep arbitrage-free learning in a generalized HJM framework via arbitrage-regularization
Kratsios, Anastasis, (2020)
-
Deep arbitrage-free learning in a generalized HJM framework via arbitrage-regularization
Kratsios, Anastasis, (2020)
- More ...