Detecting insurance fraud using supervised and unsupervised machine learning
Year of publication: |
2023
|
---|---|
Authors: | Debener, Jörn ; Heinke, Volker ; Kriebel, Johannes |
Published in: |
The journal of risk & insurance. - Malvern, Pa. : American Risk and Insurance Ass., ISSN 1539-6975, ZDB-ID 2066637-8. - Vol. 90.2023, 3, p. 743-768
|
Subject: | insurance fraud detection | machine learning | supervised learning | unsupervised learning | Künstliche Intelligenz | Artificial intelligence | Versicherungsbetrug | Insurance fraud | Lernprozess | Learning process | Lernen | Learning | Betrug | Fraud | Versicherung | Insurance | Versicherungsaufsicht | Insurance supervision |
-
Data science for insurance fraud detection : a review
Banulescu-Radu, Denisa, (2025)
-
Preliminary investigations for better monitoring : learning in repeated insurance audits
Aboutajdine, Reda, (2018)
-
Recent techniques and algorithms for cryptocurrencies' price prediction : a literature review
Haxhimehmeti, Haris, (2025)
- More ...
-
Detecting insurance fraud using supervised and unsupervised machine learning
Debener, Jörn, (2023)
-
Measuring Digital Transformation - The 'Profitability Paradox' and Digital Capabilities
Kriebel, Johannes, (2020)
-
Understanding the determinants of bond excess returns using explainable AI
Beckmann, Lars, (2023)
- More ...