Direction-of-Change Forecasting using a Volatility- Based Recurrent Neural Network
This paper investigates the profitability of a trading strategy, based on recurrent neural networks, that attempts to predict the direction-of-change of the market in the case of the NASDAQ composite index. The sample extends over the period 2/8/1971 \u2013 4/7/1998, while the sub-period 4/8/1998 - 2/5/2002 has been reserved for out-of-sample testing purposes. We demonstrate that the incorporation in the trading rule of estimates of the conditional volatility changes strongly enhances its profitability during `bear' market periods. This improvement is being measured with respect to a nested model that does not include the volatility variable as well as to a buy & hold strategy. We suggest that our findings can be justified by invoking either the `volatility feedback' theory or the existence of portfolio insurance schemes in the equity markets. Our results are also consistent with the view that volatility dependence produces sign dependence.